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Motivated by problems concerning the storage and subsequent escape of the solar 
magnetic field we have studied how a magnetic layer embedded in a convectively 
stable atmosphere evolves due to axisymmetric instabilities driven by magnetic 
buoyancy. The initial equilibrium consists of a toroidal field sheared by a weaker 
poloidal component. The linear stability problem is investigated for both ideal and 
resistive MHD, and the nonlinear evolution is followed by numerical integration of 
the equations of motion. In  all cases we found that the instability is greatly affected 
by the distribution and strength of the poloidal field. In  particular, both the 
horizontal and vertical scales of the motions are controlled by the location of the 
surface on which the poloidal field vanishes - the resonant surface. In  the nonlinear 
regime, a resonant surface close to the interface between the magnetized and field- 
free fluid leads to the localization of the instability so that only a fraction of the 
magnetic region is disrupted by the motions. By contrast, a deeply seated resonant 
surface leads to the complete disruption of the layer and to the formation of large, 
helical magnetic fragments whose identity is preserved for the entire simulation. 

1. Introduction 
One of the key problems of solar magnetohydrodynamics (MHD) is to explain the 

mechanism by which the large-scale predominantly toroidal magnetic field escapes 
from the sun's interior, eventually to appear a t  the surface as sunspots or smaller 
magnetic elements. The rapid rise of isolated magnetic flux tubes through the 
convection zone, together with problems in matching the results of convection-zone 
dynamo models to  the observed solar magnetic field, suggests that  the bulk of the 
toroidal field is not in the convection zone itself but that it may be more readily 
accommodated in the convectively stable overshoot zone situated beneath the 
convection zone proper. A full discussion of this matter, along with the appropriate 
references, may be found in Cattaneo & Hughes (1988, hereinafter referred to as I). 

In I we modelled the escape of a magnetic field from the overshoot zone by 
considering the instabilities of a magnetic layer embedded in a convectively stable 
atmosphere. To simplify matters we considered the Cartesian analogue of the 
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spherical problem with the y-axis identified with the azimuthal direction, the 
equilibrium state being piecewise polytropic with a uniform ' toroidal ' field (0, B, 0) 
sandwiched between two non-magnetic regions. The magnetic field, by virtue of its 
pressure, supports denser fluid above and consequently Rayleigh-Taylor- type 
instabilities ensue. One of the important results of I was that these primary 
instabilities lead to secondary Kelvin-Helmholtz instabilities which wrap the gas 
into regions of strong vorticity and consequently rapidly destroy the coherence of the 
magnetic field (see, for example, figure 8 of I). 

In this paper we undertake a natural extension of the work of I to  take account 
of the fact that the field in the overshoot zone, although predominantly toroidal, will 
also have a weak poloidal component. The key question that we wish to address by 
this study is whether the addition of a poloidal ingredient leads to a notable change 
in the character of the instability. As in I we again work in Cartesian geometry, 
where a meridional slice of a slightly sheared magnetic field at the equator is 
transformed into a horizontal field whose direction changes with depth, (B,(z), B,(x), 
0) say. As explained in I, when the field is purely toroidal, axisymmetric modes 
(av = 0) are a good approximation to the most rapidly growing modes, which have a 
weak dependence on the azimuthal direction (y), and hence in this paper we shall 
again restrict attention to such modes. It should be noted however that since the field 
is no longer unidirectional these motions no longer simply interchange magnetic field 
lines. 

The shearing of the field imparts a certain rigidity to the magnetized region, 
thereby hampering the development of the instability, the precise influence of the 
shear depending crucially on the manner in which it is distributed. Of particular 
significance in this field configuration is the possible existence of a so-called resonant 
surface on which the poloidal field vanishes - in axisymmetric geometry the field lines 
on the surface are purely azimuthal, in our Cartesian model they are purely in the y- 
direction. As we shall see, the location of the resonant surface plays a crucial role in 
the evolution of the instability. In linear theory it has a strong influence on both the 
vertical and horizontal scales of the unstable motions; in the nonlinear regime it  
determines not only the scale of the escaping field but also the structure of what 
remains of the magnetic layer after the instability has occurred. 

The importance of resonant surfaces in MHD has long been recognized. For 
instance, resistive MHD instabilities are almost all related to the presence of resonant 
surfaces near which resistivity plays a crucial role and field line reconnection occurs 
(see the review by White 1983). In  idealized (diffusionless) MHD resonant surfaces 
again can become of importance if the instability is weak (Rosenbluth, Dagazian & 
Rutherford 1973). It is important to  note though that the instability we have studied 
is buoyancy-driven and hence of a very different nature to instabilities such as the 
pinch (e.g. Suydam 1958) which arise from the release of energy stored in curved field 
lines. In our model there is no potential energy due to magnetic tension, all the free 
energy being gravitational and a consequence of the jump in density a t  the magnetic 
interface. 

The layout of the paper is as follows. The detailed mathematical formulation of the 
problem is contained in $2. In  $3 we describe two different approaches to the linear 
stability problem; one using the energy principle of idealized MHD to derive an 
instability criterion for a particular equilibrium, the other to  solve the general linear 
eigenvalue problem numerically. The results of our fully nonlinear numerical 
simulations are contained in $4. The concluding $5 discusses our major findings and 
their possible implications for the solar magnetic field. 
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2. Mathematical formulation 
We consider the development of axisymmetric perturbations of an equilibrium 

state in which a magnetic layer supports an overlying layer of field-free gas. Both 
regions in themselves are convectively stable and hence the sole source of potential 
energy available for instability is the density jump at the magnetic interface. The 
equilibrium magnetic field is made up of a toroidal component sheared by a weaker 
poloidal ingredient so that the resulting magnetic field is predominantly azimuthal. 
As explained in the introduction, the analysis is simplified by adopting a Cartesian 
model where the coordinate axis y is identified with the azimuthal direction and 
where the restriction to axisymmetry is translated into the requirement that the 
solutions be independent of y. The direction of increasing z is taken to be downwards. 

The computational domain extends from z = 0 (top) to z = d (bottom) and the 
magnetic field is confined initially below some depth z,. In the region z 2 zt the 
equilibrium magnetic field Be is horizontal and has constant magnitude B, but its 
orientation varies with depth so that it can be written as 

0 < z < z,, 
Be = { O’ 

Bo(B,, ( I  -B:)f, 0 ) ,  zt < 2 < 1. 
In (2.1) the x- and y-components of B are identified with the poloidal and toroidal 
components respectively. For the moment we wish to keep B, quite general but 
allowing the possibility that B, vanishes for some z, 2 zt, where z, defines the 
resonant layer. It is important to realize that in ideal MHD the topology of the 
resonant surface ia preserved by axisymmetric (y-independent) motions and that, 
therefore, the regions above and below it cannot be brought into contact without 
reconnection of the field lines. As we shall see, this property has a profound effect on 
the development of the instability. The existence of a resonant surface in the 
Cartesian model might seem rather arbitrary since a rotation of the coordinates 
about the z-axis swaps the ‘ poloidal ’ and ‘ toroidal ’ components. However, the 
uniqueness of the resonant surface is ensured by noting that the Cartesian model was 
constructed as a local representation of an axisymmetric system in spherical 
geometry where the poloidal and toroidal components are uniquely specified. 
Throughout the paper, whenever we refer to ‘ toroidal ’ (‘ zonal ’ or ‘ azimuthal ’) or 
‘poloidal’ (‘meridional’) components of the field or flow, these should be thought of 
as the local representations in Cartesian geometry of their well-defined counterparts 
in the spherical system. 

The fluid is assumed to be a perfect gas with constant shear viscosity p, thermal 
conductivity K ,  magnetic diffusivity 7 and principal specific heats c p  and c,. 
Initially the atmosphere is piecewise polytropic with a temperature distribution of 
the form T = + Az.  It is convenient to adopt the same units as in I ; consequently 
we choose d as the unit of length and d/(RT,)i as the unit of time, where R = cp-c , .  
The evolution equations can then be written as: 

P = pT, (2.2) 
atp+v.pU = 0, (2.3) 

(2.4) 
a,A+U.VA = Tckv2A,  (2.5) 

a, B + V * (BU - VB) = 7ck v2B,  

atPU + v . p ~ U  = - vp + (m + 1)  opz^+ c, ~ ( v 2 ~  +iv(v. u)) 
-(V2AVA++VB2+VA x V B ) / p ,  (2.6) 

(2.7) p(at T+ U V T )  + (7 - 1) pV * U = 7ck V2T+ (7 - 1) ck( (T#ij a, Uj + 7(v X B)’/P), 
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where q5{, = a, u, + i3, ui -$adj V - u,  B = ( -8, A ,  B,  aZ A )  and u = (u, v, w). As in I the six 
dimensionless parameters are defined by : 

We assume that the fields and motions are periodic in the x-direction and adopt the 
following conditions on the horizontal boundaries : 

T = l ,  A = O  at z = O  and T = l + O ,  A = A o  at z = l ;  

w = aZu = a,v = a,B = 0 at z = 0 , l ;  

where the constant A ,  depends on the distribution of the poloidal flux, which will be 
specified later. These boundary conditions correspond to impenetrable, stress-free, 
perfectly conducting walls (thermally). It is easy to show that the conditions on A 
and B imply that both the toroidal and poloidal fluxes are conserved. 

The numerical techniques used to solve (2.2)-(2.7) in both the linear and nonlinear 
regimes were a natural extension of those of I. 

3. Linear theory 
In this section we study the linear stability problem for the twisted field. Two 

approaches, one based on the energy principle, the other on the solutions of the 
linearized equations, are used to calculate, respectively, the conditions for marginal 
stability and the growth rate as a function of the defining parameters. It is important 
to distinguish between the two methods. The first concentrates on the most unstable 
mode, i.e. the one requiring the least driving to be destabilized, which for our 
problem has vanishing horizontal wavenumber. The second calculates the mode of 
maximum growth rate which, typically, has finite horizontal wavenumber. 

3.1. The ideal MHD ea8e 
In this subsection we derive the condition of marginal stability for sheared magnetic 
layers in the special case of no diffusion -ideal MHD. This result concerns the 
absolute stability of the layer and we defer the calculation of the growth rate's 
dependence on horizontal wavenumber to the next section where the non-ideal case 
is considered. As we shall see, the presence of a resonant surface plays a crucial role 
for the marginally stable modes. The resonant surface corresponds to the location 
where the magnetic tension vanishes and the Alfvkn wave becomes infinitely slow. 
The surface behaves so plastically that it can absorb any plasma displacement, thus 
insulating the perturbations on either side of the resonant surface. This insulation 
favours instability, as the unstable motions can be confined to the regions where the 
free energy is positive. 

The derivation makes use of the energy principle of Bernstein et al. (1958) which 
expresses the change in the potential energy of the system due to a small Lagrangian 
displacement 5 from equilibrium. Letting SW be the change in potential energy we 
write 
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where F(5) = V(ypV - 5 + 5 - V p )  + - ( J  x Q - B x (V x Q ) )  + ( m  + 1 )  Bv * ( p t )  e,, (3.2 a)  

and Q = V x (5 x B). (3.26) 

Since F(5)  is both self-adjoint (see Kulsrud 1964) and linear in C the marginality 
condition is obtained through the formal minimization of SW which involves the 
construction of a non-trivial displacement for which SW = 0.t  

Assuming that the equilibrium configuration is in hydrostatic balance and that 
5 = ([,(z) sin Zx, &(z)  cos Zx, [,(z) cos Zx) we can write 

1 

P 

after performing the integration in x. Minimizing with respect to 6, and &, gives 

where T(z) = dp/dz- ( m  + 1) Bpe/yp, which for our piecewise polytropic equilibrium 
takes the form 

0 < z < Zt, ( 3 . 5 ~ )  

s(z-zt)  zt < z < 1. (3.5b) 
( y m - m - 1 )  

(1 + o p - 1 -  
y( 1 + ozt)m+l 2/3( 1 + 02,)' 

r(z) = 

In (3.5) the term ( y m - m - l ) / y  is the subadiabatic gradient, which gives a local 
measure of the stability of the fluid to vertical displacements. The last term in (3.5b) 
measures the potential energy available to the system by virtue of the density jump 
at the magnetic interface. It should be noted that the limit B,+O in (3.4) does not 
yield the correct expression for interchange modes since in the minimization process 
we have assumed that & 4 0. The limit B, + 0 in fact gives the expression for undular 
modes with zero wavenumber in the y-direction (see Hughes & Cattaneo 1987). 

We proceed with the formal minimization of (3.4) with respect to 6, subject to the 
boundary conditions f;,(O) = f (  1) = 0. The layer is divided into three regions defined 
as follows: 

Region I 
Region 11 
Region I11 

and the behaviour of 6W in each region is considered in turn. It will become apparent 
that the contribution to SW,,, arising from region I11 vanishes identically while that 
from region I, though positive, can be made arbitrarily small and that, therefore, the 
marginality condition is determined mainly by the behaviour of 5, in region 11. 

0 < z < zt from the upper boundary to the magnetic interface ; 
z, < z < z, from the magnetic interface to the resonant layer ; 
z, < z ,< 1 from the resonant layer to the lower boundary ; 

t The actual quantity to be minimized is L = SW- A dz, where the Lagrangian multiplier A 
can be interpreted aa the square of the growth rate. Since we are concerned with the condition for 
marginal stability we set h = 0. 
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Integrating (3.4) by parts over region I1 gives 

The first two terms in (3.6) are the contributions to SW,, arising from the magnetic 
interface while the integrand gives rise to the Euler-Lagrange equation for SW. The 
minimization requires that both the boundary terms and the integral vanish 
independently. In  order to  obtain an explicit solution of the Euler-Lagrange 
equation we introduce some simplifying assumptions ; namely that 8 is small and 
that, therefore, the stratification is weak and the equilibrium thermodynamic 
quantities are approximately constant. Assuming further that  B, = B,(z-z,), the 
Euler-Lagrange equation can be written as 

( 3 . 7 ~ )  

where we have introduced the variable [ = Z(z,-z) and the constant 

(3.7b) 
B(m+ l )@(ym-m-  1 )  

YH: 
a2 = 

Equation ( 3 . 7 ~ )  has the regular solution 

6 2  = S%+$)> (3.8) 
where I is the modified Bessel function. Since, from consideration of the effects of 
magnetic tension, we expect the modes with small I to be more readily destabilized, it 
suffices that in establishing a criterion for absolute stability we examine the 
behaviour of (3.8) for small fl. It is therefore helpful to express the solution (3.8) as 
the power series 

where 

and 

n-1 

The positive definite function G,([) is monotonic in [ and satisfies 

( 3 . 9 ~ )  
(3.9b) 

(3.94 

(3.10) 

with the equality holding at 5 = 0, a property that we shall use presently. 
Having obtained an explicit expression for the displacement in region I1 we now 

justify our previous statement that the contributions from regions I and I11 can be 
neglected. We may assume that the displacement vanishes identically in region 111 
since this choice satisfies both the Euler-Lagrange equation and the boundary 
condition a t  z = 1. Furthermore the trivial solution in region I11 satisfies the 
matching condition with the solution in region I1 since both the displacement and 
(B$(d/dz)[:) vanish as z, is approached from above. I n  region I we cannot assume 
that tZ vanishes identically since &,I,, is non-zero. The integrand of (3.4) is positive 
definite in region I and hence by choosing a displacement that decays sufficiently 
rapidly above the magnetic interface while matching smoothly to 6, in region 11, SW, 
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can be made arbitrarily small. Consequently the marginality condition is determined 
solely by the behaviour of tz in region 11. 

The condition that SW vanishes can now be written as 

(3.11) 

where we observe that the boundary term coming from z = z, in equation (3.6) is 
identically zero since v is positive. Substituting for tz in (3.11) from (3.9), and noting 
that G, is an even function of 5, we obtain the marginality condition 

(3.12) 

The second term in (3.12) is positive definite and, by property (3.10), also 
monotonically increasing in I ,  thereby confirming our expectation that the modes 
with small 2 are the most readily destabilized. After substituting for Y from (3.9b) and 
(3.7 b ) ,  and rearranging, we derive the condition 

*p (F - m - 1) >- (m+l)+L for stability, 
Y (&BJ2 OD (3.13) 

where SB, is the shear at the magnetic interface and D is the distance between the 
resonant layer and the interface. Expression (3.13) shows that stability is aided by 
large magnetic shears and large subadiabtic gradients, as is to be expected. Rather 
more surprising is that (3.13) implies the existence of a critical /3 given by 

(3.14) 

below which no amount of shear can stabilize the layer. The presence of D in the 
denominator also indicates that the closer the resonant surface is to the magnetic 
interface the harder it is to achieve stability. 

This section is concluded by extending our results to the case where B, never 
vanishes within the magnetic layer and therefore there is no resonant surface. In this 
case region 111 is absent and region I1 extends to the lower boundary where tz must 
satisfy the condition fl, = 0. Without loss of generality we consider a case where the 
shear increases with depth and write, for simplicity, B, = BL z. The Euler-Lagrange 
equation in region I1 is unchanged so that (3.1 1) still gives the marginality condition, 
only now the expression for tz contains also the singular solution of ( 3 . 7 ~ ) .  To lowest 
order in 1 we can write 

(3.15) 
which clearly satisfies the boundary condition = 0. Substituting (3.15) into (3.11) 
gives 

(3.16) 

Although the stability criterion is more involved, the stabilizing effects of the lower 
boundary condition are apparent in the denominator of the left-hand side which 
becomes small as zt --f 1. 

3.2. The general cme 
In the previous subsection we made use of the energy principle to determine the 
influence of the poloidal field (and, in particular, to determine the significance of the 
resonant layer) for the special case of ideal MHD. This complementary section 
considers the more general problem arising from the linearized versions of the 
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FIGURE 1.  Contour plot of the growth rate of the most unstable mode as a function of the poloidal 
excursion 8B and the horizontal wavenumber 1. The resonant layer is fixed a t  z, = 0.7. y = j, m = 
1.6, 7 = 0.01, C, = (r = 0.05, 0 = 2, /l= 0.5, zt = 0.4. 

governing equations (2.2)-(2.7). I n  contrast to  $3.1 all of the diffusivities are non- 
zero and no simplifying assumptions are made concerning the initial equilibrium - 
the price we pay for this enhanced generality is that solutions can only be obtained 
numerically. 

All of the results of this section were derived from an initial field profile given by 
(2.1) with the following linear variation of B,: 

(3.17) 

where SB is the total excursion of the poloidal field (B , ( l ) -Bx(z t ) )  and x, is the 
position of the resonant layer. (We have also considered parabolic profiles of the form 
(4.lb) where both B, and its first derivative vanish a t  z = 2,; although the 
significance of the resonant surface is enhanced for such fields, we found the structure 
and growth rates of the linear eigenmodes to  differ only slightly from thosc arising 
from the linear profile (3.17).) As in I, guided by the astrophysical nature of the 
problem, we shall consider only small values of CT, T and C,  (of course for a well-posed 
problem T must be small so as to prevent the rapid diffusion of the initial field profile) 
- as expected on physical grounds the bifurcation to  instability is then always 
steady. In  order that the vertical structure of the eigenfunctions be illustrated clearly 
we shall, for this section, set zt = 0.4; for the nonlinear simulations of 54 higher 
values of zt were adopted so as to leave ample room for the instability to evolve. 

In  keeping with the underlying theme of the paper we shall concentrate mainly on 
the novel features arising from the introduction of a poloidal field. The eigenfunctions 
are strongly peaked near zt (as in the absence of Bz), reflecting the jump in density 
there, but their vertical structure, horizontal scale and growth rates are also strongly 
influenced by variations in SB and 2,. The contour plot of figure 1 shows the variation 
in the growth rate as a function of SB and the horizontal wavenumber 1 for a given 
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FIGURE 3. Contour plot of the growth rate of the most unstable mode as a function of the depth 
of the resonant layer z, and the horizontal wavenumber 1. The poloidal excursion SB = 0.2. y = %, 
m =  1.6,~=0.01, C k = ~ = O . O 5 , 6 = 2 , ~ = 0 . 5 , z t = O . 4 .  

depth of the resonant layer, z, = 0.7. When the poloidal field is weak (SB small) the 
most unstable modes are approximately interchanges with only a small ‘azimuthal ’ 
flow v and small perturbations to  the ‘ meridional ’ field (see the solid eigenfunctions 
of figure 2).  The vertical structure is determined principally by the location of the 
magnetic interface, the horizontal scale by diffusive effects (see I) ; obviously when 
the poloidal field is weak its precise distribution (determined by zr) is not a significant 
factor. Increasing the strength of B, is stabilizing and also brings about changes in 
the structure of the eigenfunctions. The modes most effective at counteracting the 
stabilizing poloidal field are of greater vertical extent than the quasi-interchanges 
favoured for weak fields, reaching down to the resonant layer where the poloidal field 
vanishes. This may be seen by inspection of the dashed eigenfunctions in figure 2 
which also show how v and the perturbations to  B, and B, are significantly 
increased.? The effects of the magnetic tension, virtually negligible for the 
interchange-like modes favoured when B, is small, are of course brought into 
prominence as B, is increased - as a result the fastest-growing modes assume a larger 
horizontal scale as may be seen from figure 1. 

The contour plot of figure 3 depicts the variation in growth rate as a function of 
I and z,  for a fixed value of 6B. It should be noted that there are values of z, less than 
z, or greater than 1 -for such cases equation (3.17) is still a perfectly sensible 
definition of the field profile, it just means that there is no resonant surface as such. 
When z, < zt, just increases with depth in the region z, < z < 1 ; when 2, > 1, (BJ 
decreases with depth in zt < z < 1 (though never becoming zero). It can be seen that 
in agreement with the ideal MHI) results of Q 3.1, instability is most easily achieved 
when the resonant surface is close to the top of the magnetic layer (2, M zt). For such 
cases, no matter how strong the poloidal field may become at greater depth, the 

t As in I we actually adopted a slightly smeared version of (3.17) as the initial field profile, thus 
accounting for the eigenfunctions of B being non-zero for z < zt. 
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instability always exploits the weak poloidal field near the top of the magnetic region 
by assuming the form of small-scale (both vertical and horizontal) quasi-interchange 
modes. If the resonant layer is positioned deeper within the magnetic region (zt < 
z, < 1) then the preferred eigenfunctions have a greater vertical extent, thereby again 
exploiting the weak poloidal field near z,. Figure 4 shows a comparison between the 
eigenfunctions for the two cases of the resonant layer close to the magnetic interface 
(solid line) and close to the bottom boundary (dashed line). In the light of the 
physical arguments above it is not too surprising that figure 2, which is a comparison 
of eigenfunctions for different SB at a fixed z,, and figure 4, a comparison of different 
z, for fixed SB, are somewhat similar. 

When z, < zt the poloidal field never vanishes and its magnitude increases linearly 
with depth. The preferred modes are confined close to z, where the poloidal field is 
weakest; as can be seen from figure 3, as z, is reduced below z,, thus increasing the 
poloidal field strength throughout the magnetic layer, the increased magnetic tension 
brings about an increase in the horizontal scale of the favoured modes. When z, > 
1 the poloidal field again never vanishes and its magnitude decreases linearly with 
depth. As is to be expected, compared with the case of z, < z,, this allows for greater 
penetration into the magnetic layer. This feature is illustrated by figure 5 which 
contrasts the eigenfunctions for the precisely opposite cases of z, = 0.2 and z, = 1.2 
(the field at  z = zt with z, = 0.2 is equal to that at  z = 1 with z, = 1.2 and vice versa). 
Just as for the case of decreasing z, below zt, increasing z, above 1 strengthens the 
poloidal field and again causes an increase in the horizontal scale of the most unstable 
modes. 

4. The nonlinear regime 
In this section we study the nonlinear evolution of the instability and the effects 

of the resulting large-amplitude motions on the magnetic layer. In particular we wish 
to address how the evolution is affected by changes in the strength of the poloidal 
field and by changes in its distribution. We consider here both linear and quadratic 
initial distributions of poloidal field given respectively 

Bx = SB(5 - 5,) 9 

where 5 = (z-zt)/(l -zt) and SB measures the total 

by 

(4.1 a)  

(4.1 b)  

excursion of B, across the 
magnetic layer. Quadratic initial profiles were chosen to emphasize the effects of the 
resonant layer - however, as in $3.2, we found that for the parameters considered the 
difference between linear and parabolic distributions was small. Six representative 
cases, whose properties are summarized in table 1, have been chosen for discussion. 
In cases (i)-(iii) the total twist, as measured by 6B above, is constant but the 
distribution of B, varies, whereas in cases (iv)-(vi) the magnetic twist is varied for a 
fixed value of 6,. All the calculations started from a static polytropic state and the 
instability was triggered by a small white-noise perturbation of the temperature 
field. 

4.1. Variations in distribution 
We begin by discussing the effects of varying the distribution of poloidal field. It was 
argued in I that the nonlinear evolution of the system was controlled to a large 
extent by two factors; the tendency for light, magnetized fluid to rise, thereby 
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Case NX NZ Bz SB E, Ck P 
1 256 128 quad. 0.4 0.05 0.05 0.2 

I1 256 128 quad. 0.4 0.95 0.05 0.2 
256 128 linear 0.4 -0.25 0.05 0.2 

iv 128 64 linear 0.4 0.50 0.07 0.5 
V 128 64 linear 0.8 0.50 0.07 0.5 

vi 128 64 linear 1.5 0.50 0.07 0.5 

TABLE 1 .  Properties of numerical solutions. NX and NZ are the number of collocation points in the 
horizontal and vertical directions respectively. The other parameters are: y = g, m = 1.6, 0 = 2, 
~7 = 0.05, T = 0.01. The aspect ratio for all six cases was 2: 1 .  

... 
111 

contributing positive buoyancy work, and by the formation of vortices by a 
secondary Kelvin-Helmholtz instability whose interactions dominated the flow in 
the later stages of the instability. In order to understand the evolution in the present 
situation we must consider how each factor might be affected by a varying poloidal 
field. 

Clearly the impact on the buoyancy force is minimal since in a compressible fluid 
buoyancy is a pressure effect and therefore depends only on the modulus of B - on 
the other hand the effects on the secondary instability are profound. When the field 
is purely toroidal neighbouring fluid elements transfer momentum amongst each 
other by viscous stresses (neglecting the stratification) and consequently no long- 
range communication exists between distant regions of fluid on the dynamical 
timescale (+  viscous timescale). Two simple consequences of this fact are that the 
instability develops on the smallest horizontal scale compatible with dissipation and 
that the (velocity) shear a t  the interface between magnetized and unmagnetized fluid 
becomes unstable to  the secondary Kelvin-Helmholtz instability. The only factor 
hindering the secondary instability is the stable stratification (Chandrasekhar 1961) 
whose effectiveness, however, can be greatly reduced if the Prandtl number is small 
(Zahn 1983 and references therein). A poloidal field on the other hand provides a very 
efficient mechanism for momentum transfer since Alfvhn waves can now propagate 
across the layer. Distant fluid elements can thus be coupled with an effectiveness that 
depends on the (poloidal) field strength. A distribution of poloidal field can thus be 
regarded as a distribution in effective coupling between fluid particles. In this 
context the resonant surface is of special importance since in its neighbourhood the 
Alfvdn crossing time (in the 2, z-plane) is large and the fluid is virtually uncoupled. 
Furthermore, so long as the topology of the resonant surface is preserved, fluid 
elements on opposite sides of it cannot be coupled in the above sense. It should be 
noted that the coupling, being mediated by the field lines, is not between physical 
locations but between actual Lagrangian fluid elements and therefore evolves as the 
instability evolves. 

Bearing these considerations in mind we inspect the numerical solutions for the 
first three cases of table 1. Cases (i) and (ii) have a quadratic distribution of poloidal 
field with, respectively, a resonant layer near the magnetic interface and near the 
lower boundary. In  case (iii) the poloidal field increases linearly with depth and never 
vanishes for z 2 zt (no resonant layer). The time evolution for these three cases is 
captured by figures 6-8 (plates 1-3) which show density plots of the toroidal field 
intensity a t  four different times. Overlaying the density plots are the contours of the 
poloidal flux function which give the projection of the lines of force onto the (2, z)- 
plane. It is apparent that  the three cases differ strikingly in three important respects: 
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FIGURE 9. Fraction of the initial toroidal flux below zt as a function of time. The solid line 
corresponds to case (i), the dashed line to case (ii) and the dot-dashed line to case (iii). 

(a)  in the spatial scales of the instability, (b)  in the effectiveness of the instability at 
disrupting the magnetic layer, and ( c )  in the structure of the magnetic ‘fragments’ 
produced by the instability. 

When the resonant layer is near the interface (case (i)), the instability develops on 
small horizontal scales and over a region of limited vertical extent. The penetration 
by the motions into the lower part of the layer is hindered by the increasing strength 
of the poloidal field and thus part of the layer escapes disruption. In figure 6 ( d )  
remnants of the initial layer are visible, stabilized against further disturbances by the 
combined action of the poloidal field and of the lower boundary (see discussion in 
$3.1). When the resonant layer is near the lower boundary, as it is in case (ii), the 
instability develops on larger scales (in case (i) between 8 and 9 bumps can be 
distinguished at  the magnetic interface whereas only 2 are present in case (ii)) that 
reach down to the resonant surface and lead to the complete disruption of the layer. 
Very little field remains in the lower part of the domain in figure 7 ( d ) .  In case (iii) 
where there is no resonant surface and B, increases downwards the instability 
initially develops on relatively small scales since the poloidal field is weak near the 
interface but subsequently evolves to large scales as the motions grow to larger 
amplitude and feel the effects of the poloidal field a t  greater depths. In this case a 
substantial fraction of the initial magnetic field remains near the lower boundary. 

A useful quantity to make some of these notions more quantitative is afforded by 
F [ z ; t ] ,  defined to be the fraction of the initial toroidal flux below some depth z, 
namely 1; By(& t )  dx 

I j l S , ( x W ’  
F[z  ; t ]  = (4-2) 

The graphs of F for z = zt shown in figure 9 give a measure of the long term resilience 
of the layer against the instability. By the time most of the dynamically interesting 
phases have occurred, case (ii) (resonance near the lower boundary) has about 20% 
of the initial toroidal flux in the region below zt, whereas in cases (i) and (iii) over 
50% of the initial flux still remains. The exact values of these quantities obviously 
depends on the choice of depth considered - for a larger value of z,  0.8 say, F is even 
lower for case (ii) and even higher for cases (i) and (iii). The picture that emerges from 
these observations is one where the resonant layer plays a dual role : on the one hand 
layers with a resonant surface near the magnetic interface are more easily destabilized 
(in the sense that a weaker field can lead to instability) ; on the other hand, for such 
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cases the motions are confined to a shallow region near the interface and the 
disruption of the magnetic layer is limited. By comparison, a layer with a deep 
resonant surface is harder to destabilize but once instability is possible it leads to the 
complete disruption of the magnetic region. This kind of behaviour is indeed hinted 
a t  by linear theory. 

The magnetic fragments resulting from the instability also differ greatly amongst 
the three cases. Besides the obvious difference in size we notice a more fundamental 
difference in evolution. In case (i) the small corrugations formed a t  the interface by 
the instability grow into the familiar mushrooms which become unstable to the 
secondary Kelvin-Helmholtz instability, leading to a very effective mixing of the 
ejected flux. In  figure 6(d)  it is almost impossible to relate different magnetized 
regions in the upper part of the domain with the mushrooms at an earlier time. The 
homogenization of the field occurs, mainly, because the ejected field is only weakly 
twisted and, hence, field lines can be interchanged efficiently. In  case (ii) the 
fragments produced by the instability retain their identity for the entire simulation. 
The enhanced stability of the fragments in this case is associated with the 
distribution of poloidal field within the fragments themselves. By inspection of 
figures 6 and 7 it  is possible to  conclude that when the initial gradient of B, is positive 
(increasing downwards) the fragments produced tend to have the strongest poloidal 
field near their centres ; contrariwise, when the gradient is negative the strongest 
poloidal field is found near the fragments’ surfaces. Since the secondary instability 
is caused by the velocity shear between the rising magnetized fragment and the 
descending unmagnetized fluid a poloidal field concentrated a t  the interface is most 
effective at preventing the secondary instability. A measure of this effectiveness is 
provided by linear theory (Chandrasekhar 1961 ; however, see Chiueh & Zweibel 
1987) which indicates that a velocity difference comparable to the parallel Alfvh 
speed is necessary for the secondary instability to succeed. In  a way i t  is as if the 
magnetic layer and the fragments have swapped stability ; a deep resonant surface 
causes a substantial fraction of the magnetic layer to be destroyed but the fragments 
produced in the process are very stable to subsequent disruption ; on the other hand, 
for a shallow resonant surface the instability leaves some of the initial layer intact 
but the fragments produced are strongly affected by further instabilities. 

4.2. Variations in intensity 
We now discuss cases (iv) to  (vi) which illustrate the effects of increasing the intensity 
of the magnetic shear. For these cases the initial distribution of poloidal field is linear 
and the resonant surface is in the middle of the magnetic region. The evolution is 
partly described in figure 10 which shows the distribution of toroidal field a t  two 
different times for each case. The black lines are part of the grey-scale plotting 
routine and should not be identified with the contours of the poloidal flux function. 
The most striking feature is again the difference in scales which, a t  least initially, is 
in good agreement with linear theory. 

Figure 11 shows the time history of the average kinetic and magnetic energy 
densities with the contributions arising from the poloidal (meridional) and toroidal 
(azimuthal) components displayed separately. A number of important processes 
characterizing different stages of the evolution can be identified with various features 
of these curves. Initially potential energy is released and the amplitude of the 
instability grows roughly exponentially with a growth rate that is well predicted by 
linear theory. The differences in growth rates for the three cases are evident in figure 
11 (c )  where the stronger the shear the longer the time for the instability to grow to  
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FIGURE 10. Shaded contours of the toroidal field. The figures correspond to: (a )  case (iv), t = 4.95; 
( b )  case (iv), t = 8.50; (c) case (v), t = 5.84; ( d )  case (v), t = 10.30; ( e )  case (vi), t = 7.64 and (f) case 
(vi), t = 13.88. 

appreciable amplitude. At the same time the magnetic energy is decreasing (figure 
11 b ) ,  partly owing to the instability but mostly because of the effect of magnetic 
diffusion which acts to smear out the initial sharp interface between magnetized and 
unmagnetized fluid. This diffusive process is decoupled from the motions (initially) 
and is not really part of the instability but, rather, manifests the lack of a true 
equilibrium. As discussed in I, a magnetic layer of the type considered here satisfies 
the equations of thermal equilibrium and hydrostatic balance but is not a static 
solution of the induction equation when the magnetic diffusivity is non-zero. The 
change in slope in the curves describing the magnetic energy occurs when the 
advection of magnetic field by the fluid motions dominates over the diffusive 
processes and signals the beginning of the nonlinear phase of the instability. It is 
interesting to notice that in this second phase the contributions to the magnetic 
energy from the toroidal component decrease monotonically with time while the 
poloidal contributions exhibit peaks. These local maxima in fact reflect the 
amplification of poloidal field by the winding and stretching of the field lines due to 
meridional motions. 

Zonal motions, whose contributions to the kinetic energy density are shown in 
figure 11 (d  ), are driven exclusively by magnetic tension, which requires a non-zero 
poloidal component, consistent with the ordering of the curves where the amplitude 
of the azimuthal flow increases with increasing magnetic shear. Somewhat less 
obvious is a similar ordering found in figure 11 ( c ) ,  implying that the contribution to 
the kinetic energy due to meridional flows, and therefore the overall vigour of the 
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FIGURE 12. Enstrophy and square of toroidal current as functions of time. Dashed lines 
correspond to case (iv), dot-dashed lines to case (v) and solid lines to case (vi). 

instability, also increases with increasing shear. What makes this result surprising is, 
once again, the dual role played by the shear; stabilizing in linear theory where 
growth rate decreases with increasing 6B but destabilizing in the nonlinear regime 
where the largest amplitude motions belong to the case with the largest shear. 

In  order to understand this last result it  is necessary to consider the mechanisms 
by which energy is dissipated. As we shall see presently the effective dissipation is 
due mainly to the formation of current sheets, which is greatly affected by the shear. 
Of the three dissipative mechanisms available to the system, viscous, magnetic and 
thermal diffusion, only the first two are important since the temperature field never 
develops gradients large enough for thermal damping to be significant. Their relative 
effectiveness can be measured by the enstrophy (02 = IV x uI2) and by the square of 
the toroidal current ( J i  = I9.V x BI2). It is crucial to realize that only the toroidal 
component of the current is important for the dissipation of kinetic energy. This can 
be seen by considering an ideal decay experiment where a circulating, solenoidal flow 
in the (5, 2)-plane advects a uniform toroidal field in an unstratified medium. In this 
case the flow decays due to viscosity but is almost completely insensitive to magnetic 
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FIGURE 13. Contours of the poloidal flux function (poloidal field lines) and contours of J$ (shaded 
regions). Only the values of J i  above 10% of its maximum have been contoured. The figures 
correspond to :  (a )  case (v) ,  t = 10.4 and (6) case (vi), t = 15.21. 

diffusion except, possibly, through the coupling to magnetosonic waves which is 
exceedingly weak for substantially sub-Alfvknic flows. On the other hand if the field 
is initially poloidal the problem is one of flux expulsion, which is known to be a highly 
dissipative process even in the absence of viscosity (Parker 1963; Weiss 1966; 
Moffatt & Kamkar 1983). The main difference is that in the second case t,he 
deformation of field lines by the flow allows kinetic energy to  be converted into 
magnetic energy which can then be dissipated Ohmically . 

Figure 12 shows the time histories of ( w ' )  and ( J ; )  for cases (iv)-(vi). In  order to 
obtain the relative energy dissipation rates ( J ; )  should be multiplied by a factor of 
10 which is the appropriate value of cr/3/r (see the right-hand side of (2.7)).  I t  is clear 
from these curves that as the shear increases magnetic diffusion provides the 
dominant form of dissipation - in case (iv) Ohmic and viscous dissipation are 
comparable, in case (vi) their ratio is roughly 20: 1. 

The spatial distribution of J$ however is highly intermittent with all the 
dissipation confined to thin current sheets. The structure of these current sheets can 
be seen in figure 13 where contours of J ;  (shaded regions) have been overlaid on 
contours of the poloidal flux function for cases (iv) and (vi). It is clear that  the 
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current sheets typically form late in the evolution when the mushrooms collide either 
with the boundary or with each other. The first of these two events is obviously 
artificial and follows from the limitations of our computational domain ; the second 
however is physically meaningful and depends on the number density of mushrooms 
and on the complexity of the flow, two factors that are profoundly affected by 
variations in shear. As the shear becomes stronger the preferred horizontal scale for 
the instability increases, thereby leading to a decrease in the number density of 
mushrooms (per unit length). Also, for weak shear the motions in the nonlinear 
regime are dominated by the interaction between vortices, leading to a complicated 
flow with a high collision rate. For stronger shear the poloidal field is very effective 
a t  hindering the secondary instability and the flow is considerably simpler with the 
mushrooms rising vertically and expanding. We see that as the shear becomes more 
important the dissipation becomes less effective a t  limiting the growth of the 
instability since current sheets are less likely to  form. For example, in figure 13 (a )  a 
number of current sheets are present even though the magnetic interface has not yet 
reached the upper boundary, whereas in figure 13(b )  the single sheet in the middle 
of the domain has formed owing to the lateral expansion of the mushrooms after the 
magnetic field has filled all available space. It is conceivable that in the absence of 
an upper boundary the formation of current sheets might be delayed indefinitely if 
the shear is sufficiently strong. 

5. Conclusion 
I n  this paper we have extended our study of instabilities driven by magnetic 

buoyancy to the case of a sheared magnetic layer. I n  contrast to paper I, where the 
magnetic field was treated effectively as a scalar, here we have kept the important 
characteristic of a vector field, albeit within the limitations of an axisymmetric 
treatment. The presence of a weak poloidal component introduces a new dynamical 
ingredient, namely tension, which leads to  richer physical behaviour. Of particular 
relevance is the notion of the resonant surface where the tension vanishes locally. 

One of the motivations of the present work concerns the storage of the solar 
toroidal field for times long compared to the dynamical timescale so as to allow 
amplification by dynamo action. It appears that when the resonant surface is located 
close to the interface only a small fraction of the total field is affected by the 
instability, leaving behind a stable layer with no resonant surface. By contrast, when 
the resonant surface is seated deeply within the magnetic region the nonlinear phases 
of the instability lead to the complete disruption of the layer. In  the solar case some 
measure of stability could therefore be achieved by a poloidal field with a shallow 
resonant surface which allowed some of the flux to escape but which, on the whole, 
preserved the integrity of the magnetic layer. 

The detailed nature of the motions is also affected by the position of the resonant 
surface. We observe that the development of the instability in the presence of a 
shallow resonant surface is similar to that for pure interchange modes with the later 
stages of the evolutions dominated by a secondary Kelvin-Helmholtz instability. On 
the other hand, when the resonant layer is deep the presence of a substantial amount 
of poloidal field a t  the interface between magnetized and field-free fluid leads to the 
suppression of the secondary instability and to a much more coherent evolution of 
the motions. The difference between these two cases is particularly apparent in the 
structure of the magnetic fragments produced by the instability. In the former case 
the magnetic field is strongly advected by the random motions generated by the 
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Kelvin-Helmholtz instability, leading to the efficient homogenization of the field. In 
this case the magnetic mushrooms generated by the initial instability are distorted 
by the motions and very rapidly lose their identity. In  the latter case the helical 
structure of the magnetic mushrooms helps to prevent further disruption of the 
fragments. These results suggest that some of the observed modulations in scale, 
morphology and amplitude of the emerging flux (Golub et nl. 1981) might be related 
to small variations in the distribution of the poloidal field during the solar cycle. 

Another new feature deriving from the presence of tension is magnetic reconnection 
and the resulting coupling of kinetic energy to Ohmic dissipation. We found that, 
typically, magnetic reconnection occurred in one of two situations ; when mushrooms 
detach themselves from the layer and when they collide with each other. During 
these events intense, localized current sheets form that lead to Ohmic dissipation. 
The role of Ohmic dissipation in quenching the instability depends on the overall 
intensity of the poloidal field, and three distinct regimes can be distinguished. When 
the poloidal field is very weak, tension forces are not effective enough to couple the 
motions to the (poloidal) field which is essentially kinematic and the dominant 
dissipative mechanism is viscous. This is always the case for pure interchange modes. 
The next regime is achieved when the poloidal field is no longer kinematic so that 
meridional motions couple to Ohmic dissipation but the field is not strong enough to 
suppress the secondary instability. Finally, in the third regime the motions and 
Ohmic dissipation are strongly coupled but tension forces cause a more ordered 
evolution with fewer events leading to the formation of current sheets. 
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